Performance assessment of a NaI(Tl) gamma counter for PET applications with methods for improved quantitative accuracy and greater standardization
نویسندگان
چکیده
BACKGROUND Although NaI(Tl) gamma counters play an important role in many quantitative positron emission tomography (PET) protocols, their calibration for positron-emitting samples has not been standardized across imaging sites. In this study, we characterized the operational range of a gamma counter specifically for positron-emitting radionuclides, and we assessed the role of traceable (68)Ge/(68)Ga sources for standardizing system calibration. METHODS A NaI(Tl) gamma counter was characterized with respect to count rate performance, adequacy of detector shielding, system stability, and sample volume effects using positron-emitting radionuclides (409- to 613-keV energy window). System efficiency was measured using (18)F and compared with corresponding data obtained using a long-lived (68)Ge/(68)Ga source that was implicitly traceable to a national standard. RESULTS One percent count loss was measured at 450 × 10(3) counts per minute. Penetration of the detector shielding by 511-keV photons gave rise to a negligible background count rate. System stability tests showed a coefficient of variation of 0.13% over 100 days. For a sample volume of 4 mL, the efficiencies relative to those at 0.1 mL were 0.96, 0.94, 0.91, 0.78, and 0.72 for (11)C, (18)F, (125)I, (99m)Tc, and (51)Cr, respectively. The efficiency of a traceable (68)Ge/(68)Ga source was 30.1% ± 0.07% and was found to be in close agreement with the efficiency for (18)F after consideration of the different positron fractions. CONCLUSIONS Long-lived (68)Ge/(68)Ga reference sources, implicitly traceable to a national metrology institute, can aid standardization of gamma counter calibration for (18)F. A characteristic feature of positron emitters meant that accurate calibration could be maintained over a wide range of sample volumes by using a narrow energy window centered on the 511-keV peak.
منابع مشابه
Comparative assessment of the accuracy of maximum likelihood and correlated signal enhancement algorithm positioning methods in gamma camera with large square photomultiplier tubes
Introduction: The gamma cameras, based on scintillation crystal followed by an array of photomultiplier tubes (PMTs), play a crucial role in nuclear medicine. The use of square PMTs provides the minimum dead zones in the camera. The camera with square PMTs also reduces the number of PMTs relative to the detection area. Introduction of a positioning algorithm to improve the spat...
متن کاملA Comparative Study of Field Gamma-ray Spectrometry by NaI(Tl) and HPGe Detectors in the South Caspian Region
Natural radionuclides present in soil as well as certain anthropogenic radionuclides released to the environment are the major contributors to terrestrial outdoor exposures. In the assessment of human exposures from environmental radioactivity, besides the conventional method of soil and vegetation sampling combined with laboratory based analyses of environmental media, the other choice would b...
متن کاملDetermination of the flux of a neutron radioisotope source through gold activation method
Introduction: In recent years, the use of neutrons has increased in various fields such as medicine and industry. One of the important applications of neutrons is in medical research. Neutrons have greater linear energy transfer than gamma rays and are considered more dangerous radiation. Hence, the detection and determination of neutron dose is a very important and vital issu...
متن کاملEvaluation of Pixelated NaI(Tl) Detectors for PET
A new detector design using pixelated NaI(Tl) crystals has been evaluated for use in positron emission tomography (PET). This detector uses 4 4 30 mm NaI(Tl) pixels coupled via a lightguide (1.4 cm thick) to an array of 39 mm diameter photomultiplier tubes (PMTs) in an Anger detector design. Our measurements show that the high light output of NaI(Tl) leads to a good discrimination of the 4 mm N...
متن کاملQuantitative Assessment of Analytical Phase Quality of Clinical Biochemistry Parameters Using Sigma Metrics
Background and Aims: Six sigma is the latest version of total quality management. It is quantitative goal for process performance. With increasing demands for improved accuracy and reliability of the results, Six Sigma is gaining increased visibility in the clinical laboratory process outcomes. The aim of study was to evaluate the quality of analytical phase performance in a clinical biochemist...
متن کامل